UNIVERSITE HASSAN II DE CASABLANCA

FACULTE DES SCIENCES JURIDIQUES ECONOMIQUES ET SOCIALES CASABLANCA Année Universitaire 2019-2020

ALGEBRE LINEAIRE Série 1

Exercice 1

On rappelle que $(\mathbb{R}^2, +)$ est un groupe commutatif. On munit \mathbb{R}^2 de la loi + et la loi externe . définie par :

$$\forall (x,y) \in \mathbb{R}^2, \ \forall \ \lambda \in \mathbb{R}$$

 $\lambda. (x,y) = (\lambda x, \lambda^{-1}y) \text{ si } \lambda \in \mathbb{R}$
 $0.(x,y) = (0,0) \text{ si } \lambda = 0$

 $(\mathbb{R}^2, +, .)$ est-il un espace vectoriel sur \mathbb{R} ?

Exercice 2

Déterminer si \mathbb{R}^2 muni des lois internes et externes suivantes est un espace vectoriel sur \mathbb{R} . Pour tout (a,b) et (c,d) dans \mathbb{R}^2 et α dans \mathbb{R} :

1-
$$(a, b) + (c, d) = (a + b, b + d)$$
; $\alpha.(a, b) = (a, \alpha b)$

2- (a,b) + (c,d) = (a + c,b+d);
$$\alpha$$
.(a,b) = (α^2 a, α^2 b)

3-
$$(a, b)$$
 + (c, d) = (c, d) ; $\alpha \cdot (a, b)$ = $(\alpha a, \alpha b)$

Exercice 3

On considère les espaces vectoriels \mathbb{R}^n , pour n = 2, 3, 4 et $F(\mathbb{R}, \mathbb{R})$ muni des lois usuelles. Parmi les ensembles suivantes, lesquels sont sous-espaces vectoriels de $\mathcal{F}(\mathbb{R}, \mathbb{R})$ ou de \mathbb{R}^n , avec n = 2, 3, 4?

1-
$$E_1 = \{ (x, y, z) \in \mathbb{R}^3 / x + y = 0 \}$$

2-
$$E_2 = \{ (x, y, z) \in \mathbb{R}^3 / xy = 0 \}$$

3-
$$E_3 = \{ (x, y, z, t) \in \mathbb{R}^4 / x = 0, y = 0 \}$$

4-
$$E_4 = \{ (x, y, z) \in \mathbb{R}^3 / x = 1 \}$$

5-
$$E_5 = \{ (x, y) \in \mathbb{R}^2 / x^2 + xy \ge 0 \}$$

6-
$$E_6 = \{ (x, y) \in \mathbb{R}^2 / x^2 + xy + y^2 \ge 0 \}$$

7-
$$E_7 = \{ f \in \mathcal{F} (\mathbb{R}, \mathbb{R}) / f(1) = 0 \}$$

8-
$$E_8$$
 = { $f \in \mathcal{F} (\mathbb{R}, \mathbb{R}) / f(0) = 1 }$

9-
$$E_9$$
 = { $f \in \mathcal{F} (\mathbb{R}, \mathbb{R}) / f \text{ est croissant}$

Exercice 4

- 1- L'ensemble des suites de réels divergentes est-il un espace vectoriel sur R.?
- 2- L'ensemble des fonctions numériques monotones (croissantes ou décroissantes) estil un sous-espace vectoriel de \mathcal{F} (\mathbb{R} , \mathbb{R})? L'ensemble des fonctions numériques paires?
- 3-L'ensemble des suites de réels (u_n) vérifiant : \forall $n \in \mathbb{N}$, 3 u_{n+1} 2 u_n = 0 est-il un espace vectoriel ?.

4-Les ensembles suivants sont-ils des sous –espaces vectoriels de \mathbb{R}^3 ?

a- E = {
$$(x, y, z) \in \mathbb{R}^3 / 3x + 2z = \alpha - y$$
} (discuter selon les valeurs de $\alpha \in \mathbb{R}$)

b- F = {
$$(x, y, z) \in \mathbb{R}^3 / |2x - y| = \alpha z$$
} (discuter selon les valeurs de $\alpha \in \mathbb{R}$)

5- On considère les ensembles suivants :

E = {
$$(x, y, z) \in \mathbb{R}^3 / x + y = 0 \text{ et } y + z = 0$$
 }
F = { $(x, y, z) \in \mathbb{R}^3 / x + 2y + z = 0$ }
G = { $(x, y, z) \in \mathbb{R}^3 / x + y + z = 0$ }
H = { $(x + z, x - z, 2x + y + 3z) / (x, y, z) \in \mathbb{R}^3$ }

- a- Montrer que H est un sous-espace vectoriel de \mathbb{R}^3 (E, F et G sont des sous-espaces vectoriels).
- b-Déterminer $E \cap F$, $E \cap G$ et $E \cap H$. Les ensembles de $E \cup F$, $E \cup G$ sont-ils des sousespaces vectoriels de \mathbb{R}^3 ?
- c-Donner une famille génératrice de E, F et H.

Exercice 6

- <u>1</u>- Montrer que, si trois vecteurs \mathbf{u} , \mathbf{v} et \mathbf{w} d'un espace vectoriel sont linéairement indépendants, il en est de même pour $\mathbf{u} + \mathbf{v}$, $\mathbf{v} + \mathbf{w}$ et $\mathbf{w} + \mathbf{u}$.
- 2-Montrer que, si deux vecteurs u et v d'un espace vectoriel E sont générateurs de l'espace vectoriel E, il en est de même pour $\mathbf{u} + \mathbf{v}$ et $\mathbf{u} \mathbf{v}$.
- 3-Soient A et B deux sous-espaces vectoriels de E. Montrer que $A \cup B$ est un sous-espace vectoriel de E si et seulement si $A \subset B$ ou $B \subset A$.